add mmlp and other functions
This commit is contained in:
parent
2bdefda64e
commit
a8969ea76e
@ -7,12 +7,11 @@ from torchvision import transforms
|
||||
|
||||
|
||||
class MOAFDataset(Dataset):
|
||||
def __init__(self, dataset_root, tvt='train', objectives_params_list=None, output_type='distance'):
|
||||
def __init__(self, dataset_root, tvt='train', objectives_params_list=None):
|
||||
"""
|
||||
dataset_root: 根目录(Pathable)
|
||||
tvt: 'train'|'val'|'test'(用于选择 transform)
|
||||
objectives_params_list: 列表,包含要加载的物镜目录名,例如 ["10x-0.25-1.0000", ...]
|
||||
output_type: 'distance'(返回 nm)或 'ratio'(返回 defocus / DoF)
|
||||
"""
|
||||
super().__init__()
|
||||
self.dataset_root = Path(dataset_root)
|
||||
@ -22,12 +21,6 @@ class MOAFDataset(Dataset):
|
||||
else:
|
||||
self.objectives_params_list = objectives_params_list
|
||||
|
||||
# 处理 output_type,非法输入回退到 'distance'
|
||||
if isinstance(output_type, str) and output_type.lower() == "ratio":
|
||||
self.output_type = "ratio"
|
||||
else:
|
||||
self.output_type = "distance"
|
||||
|
||||
# 根据 tvt 选择 transform
|
||||
if self.tvt == "train":
|
||||
self.transform = transforms.Compose([
|
||||
@ -101,30 +94,17 @@ class MOAFDataset(Dataset):
|
||||
rix_tensor = torch.tensor(rix, dtype=torch.float32)
|
||||
label_nm_tensor = torch.tensor(label_nm, dtype=torch.float32)
|
||||
|
||||
# min-max 归一化输入参数
|
||||
mag_tensor = (mag_tensor - 10) / (100 - 10)
|
||||
na_tensor = (na_tensor - 0) / (1.25 - 0)
|
||||
rix_tensor = (rix_tensor - 1.0) / (1.5 - 1.0)
|
||||
|
||||
# 根据 output_type 决定输出 label
|
||||
if self.output_type == "ratio":
|
||||
dof_nm = self._compute_dof_nm(mag=mag, na=na, rix=rix, wavelength_nm=550.0, pixel_size_nm=3450.0)
|
||||
# 若 DOF 为 inf 或极大,避免除零
|
||||
if not (dof_nm is None or dof_nm == float('inf') or dof_nm == 0):
|
||||
label_out = label_nm / dof_nm
|
||||
else:
|
||||
label_out = label_nm # 回退,虽然不太可能
|
||||
label_out_tensor = torch.tensor(float(label_out), dtype=torch.float32)
|
||||
else:
|
||||
# distance 模式:直接返回 nm
|
||||
label_out_tensor = label_nm_tensor
|
||||
# # min-max 归一化输入参数
|
||||
# mag_tensor = (mag_tensor - 10) / (100 - 10)
|
||||
# na_tensor = (na_tensor - 0) / (1.25 - 0)
|
||||
# rix_tensor = (rix_tensor - 1.0) / (1.5 - 1.0)
|
||||
|
||||
sample = {
|
||||
'image': image,
|
||||
'mag': mag_tensor,
|
||||
'na': na_tensor,
|
||||
'rix': rix_tensor,
|
||||
'label': label_out_tensor,
|
||||
'label': label_nm_tensor,
|
||||
'path': img_path.as_posix(),
|
||||
}
|
||||
|
||||
@ -139,8 +119,7 @@ if __name__ == "__main__":
|
||||
train_set = MOAFDataset("F:/Datasets/MODatasetD", tvt='train',
|
||||
objectives_params_list=[
|
||||
"100x-1.25-1.4730",
|
||||
],
|
||||
output_type='ratio')
|
||||
])
|
||||
from torch.utils.data import DataLoader
|
||||
train_loader = DataLoader(train_set, batch_size=4, shuffle=True, num_workers=2)
|
||||
for batch in train_loader:
|
||||
|
||||
@ -40,8 +40,14 @@ class ParamEmbedding(nn.Module):
|
||||
nn.LayerNorm(out_dim)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.embedding(x)
|
||||
def forward(self, params):
|
||||
# min-max 归一化参数
|
||||
normalized_params = torch.stack([
|
||||
(params[:, 0] - 10.0) / 90.0,
|
||||
params[:, 1] / 1.25,
|
||||
(params[:, 2] - 1.0) / 0.5
|
||||
], dim=1)
|
||||
return self.embedding(normalized_params)
|
||||
|
||||
|
||||
# FiLM 融合块
|
||||
@ -238,3 +244,73 @@ class MOAFWithSE(nn.Module):
|
||||
x = self.regressor(x)
|
||||
return x
|
||||
|
||||
# 多回归头模型
|
||||
class MOAFWithMMLP(nn.Module):
|
||||
def __init__(self, num_lenses=7):
|
||||
super().__init__()
|
||||
shuff = models.shufflenet_v2_x0_5(weights="DEFAULT")
|
||||
self.features = nn.Sequential(
|
||||
shuff.conv1, shuff.maxpool,
|
||||
shuff.stage2, shuff.stage3,
|
||||
shuff.stage4, shuff.conv5
|
||||
)
|
||||
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
||||
self.num_lenses = num_lenses
|
||||
self.regressors = nn.ModuleList([
|
||||
self._create_regressor_head() for _ in range(num_lenses)
|
||||
])
|
||||
|
||||
def _create_regressor_head(self):
|
||||
return nn.Sequential(
|
||||
nn.Flatten(),
|
||||
nn.Linear(1024, 128),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(128, 1)
|
||||
)
|
||||
|
||||
def _find_lens_id(self, params):
|
||||
batch_size = params.shape[0]
|
||||
lens_ids = []
|
||||
|
||||
for i in range(batch_size):
|
||||
mag, na, rix = params[i][0].item(), params[i][1].item(), params[i][2].item()
|
||||
|
||||
# 直接的条件匹配(类似于switch-case)
|
||||
if mag == 10 and na == 0.25 and rix == 1.0000:
|
||||
lens_ids.append(0) # obj1
|
||||
elif mag == 10 and na == 0.30 and rix == 1.0000:
|
||||
lens_ids.append(1) # obj2
|
||||
elif mag == 20 and na == 0.70 and rix == 1.0000:
|
||||
lens_ids.append(2) # obj3
|
||||
elif mag == 20 and na == 0.80 and rix == 1.0000:
|
||||
lens_ids.append(3) # obj4
|
||||
elif mag == 40 and na == 0.65 and rix == 1.0000:
|
||||
lens_ids.append(4) # obj5
|
||||
elif mag == 100 and na == 0.80 and rix == 1.0000:
|
||||
lens_ids.append(5) # obj6
|
||||
elif mag == 100 and na == 1.25 and rix == 1.4730:
|
||||
lens_ids.append(6) # obj7
|
||||
else:
|
||||
lens_ids.append(0)
|
||||
|
||||
return torch.tensor(lens_ids, dtype=torch.long, device=params.device)
|
||||
|
||||
def forward(self, image, params):
|
||||
x = self.features(image)
|
||||
x = self.avgpool(x)
|
||||
|
||||
lens_ids = self._find_lens_id(params)
|
||||
batch_size = params.size(0)
|
||||
outputs = []
|
||||
for i in range(batch_size):
|
||||
current_lens_id = lens_ids[i]
|
||||
# 确保lens_id在有效范围内
|
||||
if current_lens_id < 0 or current_lens_id >= self.num_lenses:
|
||||
current_lens_id = 0
|
||||
|
||||
# 选择对应的回归头
|
||||
head_output = self.regressors[current_lens_id](x[i].unsqueeze(0))
|
||||
outputs.append(head_output)
|
||||
|
||||
return torch.cat(outputs, dim=0)
|
||||
|
||||
|
||||
16
MOAFTest.py
16
MOAFTest.py
@ -9,10 +9,10 @@ from pathlib import Path
|
||||
|
||||
from MOAFUtils import print_with_timestamp
|
||||
from MOAFDatasets import MOAFDataset
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE, MOAFWithMMLP
|
||||
|
||||
|
||||
def test(model, test_loader, device, model_type, output_type):
|
||||
def test(model, test_loader, device, model_type, dataset_type):
|
||||
model.eval()
|
||||
results = []
|
||||
|
||||
@ -30,7 +30,7 @@ def test(model, test_loader, device, model_type, output_type):
|
||||
df["pred"] = results
|
||||
Path("results").mkdir(exist_ok=True, parents=True)
|
||||
# !pip install openpyxl
|
||||
df.to_excel(f"results/{model_type}_{output_type}.xlsx", index=False)
|
||||
df.to_excel(f"results/{model_type}_{dataset_type}.xlsx", index=False)
|
||||
|
||||
|
||||
def main():
|
||||
@ -43,7 +43,7 @@ def main():
|
||||
|
||||
# 确定超参数
|
||||
model_type = cfg["model_type"]
|
||||
output_type = cfg["output_type"]
|
||||
dataset_type = cfg["dataset_type"]
|
||||
dataset_dir = cfg["dataset_dir"]
|
||||
batch_size = int(cfg["batch_size"])
|
||||
num_workers = int(cfg["num_workers"])
|
||||
@ -53,7 +53,7 @@ def main():
|
||||
print_with_timestamp(f"Using device {device}")
|
||||
|
||||
# 加载数据集
|
||||
test_set = MOAFDataset(dataset_dir, "test", objective_params_list, output_type)
|
||||
test_set = MOAFDataset(dataset_dir, "test", objective_params_list)
|
||||
print_with_timestamp("Dataset Done")
|
||||
|
||||
test_loader = DataLoader(
|
||||
@ -72,15 +72,17 @@ def main():
|
||||
elif "se" in model_type:
|
||||
fusion_depth_list = [int(ch) for ch in model_type[2:]]
|
||||
model = MOAFWithSE(fusion_depth_list).to(device)
|
||||
elif "mmlp" in model_type:
|
||||
model = MOAFWithMMLP(fusion_depth_list).to(device)
|
||||
else:
|
||||
model = MOAFNoFusion().to(device)
|
||||
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{output_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{dataset_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
print_with_timestamp("Model Loaded")
|
||||
|
||||
print_with_timestamp("Start testing")
|
||||
test(model, test_loader, device, model_type, output_type)
|
||||
test(model, test_loader, device, model_type, dataset_type)
|
||||
print_with_timestamp("Testing completed!")
|
||||
|
||||
|
||||
|
||||
22
MOAFTrain.py
22
MOAFTrain.py
@ -12,7 +12,7 @@ from pathlib import Path
|
||||
|
||||
from MOAFUtils import print_with_timestamp
|
||||
from MOAFDatasets import MOAFDataset
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE, MOAFWithMMLP
|
||||
|
||||
|
||||
def train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn):
|
||||
@ -49,10 +49,10 @@ def valid_epoch(model, val_loader, epoch, epochs, device, loss_fn):
|
||||
return val_loss
|
||||
|
||||
|
||||
def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, output_type):
|
||||
def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, dataset_type):
|
||||
best_val_loss = float('inf')
|
||||
# !pip install tensorboard
|
||||
with SummaryWriter(log_dir=f"runs/{model_type}_{output_type}") as writer:
|
||||
with SummaryWriter(log_dir=f"runs/{model_type}_{dataset_type}") as writer:
|
||||
# Tensorboard 上显示模型结构
|
||||
dummy_input1, dummy_input2 = torch.randn(5, 3, 384, 384).to(device), torch.randn(5, 3).to(device)
|
||||
writer.add_graph(model, (dummy_input1, dummy_input2))
|
||||
@ -90,7 +90,7 @@ def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, sch
|
||||
"val_loss": avg_val_loss
|
||||
}
|
||||
Path("ckpts").mkdir(exist_ok=True, parents=True)
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{output_type}_best_model.pt")
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{dataset_type}_best_model.pt")
|
||||
print_with_timestamp(f"New best model saved at epoch {epoch+1}")
|
||||
|
||||
|
||||
@ -104,7 +104,7 @@ def main():
|
||||
|
||||
# 确定超参数
|
||||
model_type = cfg["model_type"]
|
||||
output_type = cfg["output_type"]
|
||||
dataset_type = cfg["dataset_type"]
|
||||
dataset_dir = cfg["dataset_dir"]
|
||||
batch_size = int(cfg["batch_size"])
|
||||
num_workers = int(cfg["num_workers"])
|
||||
@ -118,8 +118,8 @@ def main():
|
||||
print_with_timestamp(f"Using device {device}")
|
||||
|
||||
# 加载数据集
|
||||
train_set = MOAFDataset(dataset_dir, "train", objective_params_list, output_type)
|
||||
val_set = MOAFDataset(dataset_dir, "val", objective_params_list, output_type)
|
||||
train_set = MOAFDataset(dataset_dir, "train", objective_params_list)
|
||||
val_set = MOAFDataset(dataset_dir, "val", objective_params_list)
|
||||
print_with_timestamp("Dataset Done")
|
||||
|
||||
train_loader = DataLoader(
|
||||
@ -142,14 +142,16 @@ def main():
|
||||
elif "se" in model_type:
|
||||
fusion_depth_list = [int(ch) for ch in model_type[2:]]
|
||||
model = MOAFWithSE(fusion_depth_list).to(device)
|
||||
elif "mmlp" in model_type:
|
||||
model = MOAFWithMMLP(fusion_depth_list).to(device)
|
||||
else:
|
||||
model = MOAFNoFusion().to(device)
|
||||
print_with_timestamp("Model Loaded")
|
||||
|
||||
# 形式化预训练参数加载
|
||||
if checkpoint_load:
|
||||
if Path(f"ckpts/{model_type}_{output_type}_best_model.pt").exists():
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{output_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
if Path(f"ckpts/{model_type}_{dataset_type}_best_model.pt").exists():
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{dataset_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
print_with_timestamp("Model Checkpoint Params Loaded")
|
||||
else:
|
||||
@ -165,7 +167,7 @@ def main():
|
||||
)
|
||||
|
||||
print_with_timestamp("Start trainning")
|
||||
fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, output_type)
|
||||
fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, dataset_type)
|
||||
print_with_timestamp("Training completed!")
|
||||
|
||||
|
||||
|
||||
@ -18,7 +18,7 @@ from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from MOAFUtils import print_with_timestamp
|
||||
from MOAFDatasets import MOAFDataset
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE, MOAFWithMMLP
|
||||
|
||||
|
||||
def train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn, rank):
|
||||
@ -71,7 +71,7 @@ def fit(rank, world_size, cfg):
|
||||
|
||||
# 确定超参数
|
||||
model_type = cfg["model_type"]
|
||||
output_type = cfg["output_type"]
|
||||
dataset_type = cfg["dataset_type"]
|
||||
dataset_dir = cfg["dataset_dir"]
|
||||
batch_size = int(cfg["batch_size"])
|
||||
num_workers = int(cfg["num_workers"])
|
||||
@ -82,8 +82,8 @@ def fit(rank, world_size, cfg):
|
||||
checkpoint_load = cfg["checkpoint_load"]
|
||||
|
||||
# 加载数据集
|
||||
train_set = MOAFDataset(dataset_dir, "train", objective_params_list, output_type)
|
||||
val_set = MOAFDataset(dataset_dir, "val", objective_params_list, output_type)
|
||||
train_set = MOAFDataset(dataset_dir, "train", objective_params_list)
|
||||
val_set = MOAFDataset(dataset_dir, "val", objective_params_list)
|
||||
|
||||
# 分布式化数据集
|
||||
train_sampler = DistributedSampler(train_set, num_replicas=world_size, rank=rank, shuffle=True)
|
||||
@ -111,13 +111,15 @@ def fit(rank, world_size, cfg):
|
||||
elif "se" in model_type:
|
||||
fusion_depth_list = [int(ch) for ch in model_type[2:]]
|
||||
model = MOAFWithSE(fusion_depth_list).to(device)
|
||||
elif "mmlp" in model_type:
|
||||
model = MOAFWithMMLP(fusion_depth_list).to(device)
|
||||
else:
|
||||
model = MOAFNoFusion().to(device)
|
||||
|
||||
# 形式化预训练参数加载
|
||||
if checkpoint_load:
|
||||
if Path(f"ckpts/{model_type}_{output_type}_best_model.pt").exists():
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{output_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
if Path(f"ckpts/{model_type}_{dataset_type}_best_model.pt").exists():
|
||||
checkpoint = torch.load(f"ckpts/{model_type}_{dataset_type}_best_model.pt", map_location=device, weights_only=False)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
if rank == 0:
|
||||
print_with_timestamp("Model Checkpoint Params Loaded")
|
||||
@ -141,7 +143,7 @@ def fit(rank, world_size, cfg):
|
||||
|
||||
# Tensorboard 上显示模型结构
|
||||
if rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"runs/{model_type}_{output_type}")
|
||||
tb_writer = SummaryWriter(log_dir=f"runs/{model_type}_{dataset_type}")
|
||||
dummy_input1, dummy_input2 = torch.randn(5, 3, 384, 384).to(device), torch.randn(5, 3).to(device)
|
||||
tb_writer.add_graph(model.module, (dummy_input1, dummy_input2))
|
||||
|
||||
@ -191,7 +193,7 @@ def fit(rank, world_size, cfg):
|
||||
"val_loss": avg_val_loss
|
||||
}
|
||||
Path("ckpts").mkdir(exist_ok=True, parents=True)
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{output_type}_best_model.pt")
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{dataset_type}_best_model.pt")
|
||||
print_with_timestamp(f"New best model saved at epoch {epoch+1}")
|
||||
|
||||
# 清除进程
|
||||
|
||||
@ -1,6 +1,6 @@
|
||||
# 模型与数据
|
||||
# 模型与数据, 其中 dataset_type 应当和 train_objective_params_list 对应起来
|
||||
model_type = "cca2"
|
||||
output_type = "distance"
|
||||
dataset_type = "objall"
|
||||
dataset_dir = "F:/Datasets/MODatasetD"
|
||||
# 训练参数
|
||||
batch_size = 64
|
||||
@ -21,5 +21,5 @@ test_objective_params_list = [
|
||||
"40x-0.65-1.0000", "100x-0.80-1.0000",
|
||||
"100x-1.25-1.4730"
|
||||
]
|
||||
# 加载形式化预训练参数
|
||||
# 断点加载
|
||||
checkpoint_load = true
|
||||
Loading…
x
Reference in New Issue
Block a user