delete patinece and only pbar when rank is 0
This commit is contained in:
parent
699d7448b9
commit
011eae0107
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,7 +1,8 @@
|
||||
__pycache__/
|
||||
ckpts/
|
||||
configs/
|
||||
configs/*
|
||||
!configs/config_example.toml
|
||||
runs/
|
||||
results/
|
||||
models.ipynb
|
||||
*.ipynb
|
||||
ShuffleNetV2.txt
|
||||
12
MOAFTrain.py
12
MOAFTrain.py
@ -49,9 +49,8 @@ def valid_epoch(model, val_loader, epoch, epochs, device, loss_fn):
|
||||
return val_loss
|
||||
|
||||
|
||||
def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, patience, model_type, output_type):
|
||||
def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, output_type):
|
||||
best_val_loss = float('inf')
|
||||
patience_counter = 0
|
||||
# !pip install tensorboard
|
||||
with SummaryWriter(log_dir=f"runs/{model_type}_{output_type}") as writer:
|
||||
# Tensorboard 上显示模型结构
|
||||
@ -82,7 +81,6 @@ def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, sch
|
||||
# 记录检查点
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
patience_counter = 0
|
||||
save_dict = {
|
||||
"epoch": epoch,
|
||||
"model_state_dict": model.state_dict(),
|
||||
@ -94,11 +92,6 @@ def fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, sch
|
||||
Path("ckpts").mkdir(exist_ok=True, parents=True)
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{output_type}_best_model.pt")
|
||||
print_with_timestamp(f"New best model saved at epoch {epoch+1}")
|
||||
else:
|
||||
patience_counter += 1
|
||||
if patience_counter > patience:
|
||||
print_with_timestamp(f"Early stopping at {epoch+1} epochs")
|
||||
break
|
||||
|
||||
|
||||
def main():
|
||||
@ -116,7 +109,6 @@ def main():
|
||||
batch_size = int(cfg["batch_size"])
|
||||
num_workers = int(cfg["num_workers"])
|
||||
lr = float(cfg["lr"])
|
||||
patience = int(cfg["patience"])
|
||||
epochs = int(cfg["epochs"])
|
||||
warmup_epochs = int(cfg["warmup_epochs"])
|
||||
objective_params_list = cfg["train_objective_params_list"]
|
||||
@ -173,7 +165,7 @@ def main():
|
||||
)
|
||||
|
||||
print_with_timestamp("Start trainning")
|
||||
fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, patience, model_type, output_type)
|
||||
fit(model, train_loader, val_loader, epochs, device, optimizer, loss_fn, scheduler, model_type, output_type)
|
||||
print_with_timestamp("Training completed!")
|
||||
|
||||
|
||||
|
||||
@ -21,11 +21,13 @@ from MOAFDatasets import MOAFDataset
|
||||
from MOAFModels import MOAFNoFusion, MOAFWithFiLM, MOAFWithChannelCrossAttention, MOAFWithSE
|
||||
|
||||
|
||||
def train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn):
|
||||
def train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn, rank):
|
||||
model.train()
|
||||
train_loss = 0.0
|
||||
|
||||
for data in tqdm(train_loader, desc=f"Epoch {epoch+1:03d}/{epochs:03d} [Train]"):
|
||||
data_iter = tqdm(train_loader, desc=f"Epoch {epoch+1:03d}/{epochs:03d} [Train]") if rank in {-1, 0} else train_loader
|
||||
|
||||
for data in data_iter:
|
||||
images, labels = data["image"].to(device, non_blocking=True), data["label"].to(device, non_blocking=True)
|
||||
params = torch.stack((data["mag"], data["na"], data["rix"]), dim=1).to(device, non_blocking=True)
|
||||
|
||||
@ -39,12 +41,14 @@ def train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn):
|
||||
return train_loss
|
||||
|
||||
|
||||
def valid_epoch(model, val_loader, epoch, epochs, device, loss_fn):
|
||||
def valid_epoch(model, val_loader, epoch, epochs, device, loss_fn, rank):
|
||||
model.eval()
|
||||
val_loss = 0.0
|
||||
|
||||
data_iter = tqdm(val_loader, desc=f"Epoch {epoch+1:03d}/{epochs:03d} [Valid]") if rank in {-1, 0} else val_loader
|
||||
|
||||
with torch.no_grad():
|
||||
for data in tqdm(val_loader, desc=f"Epoch {epoch+1:03d}/{epochs:03d} [Valid]"):
|
||||
for data in data_iter:
|
||||
images, labels = data["image"].to(device, non_blocking=True), data["label"].to(device, non_blocking=True)
|
||||
params = torch.stack((data["mag"], data["na"], data["rix"]), dim=1).to(device, non_blocking=True)
|
||||
|
||||
@ -56,12 +60,6 @@ def valid_epoch(model, val_loader, epoch, epochs, device, loss_fn):
|
||||
|
||||
|
||||
def fit(rank, world_size, cfg):
|
||||
"""
|
||||
每个进程运行的主函数(单卡)。
|
||||
rank: 该进程的全局 rank(0 ~ world_size-1)
|
||||
world_size: 进程总数(通常等于可用 GPU 数)
|
||||
cfg: 从 toml 读取的配置字典
|
||||
"""
|
||||
# 初始化分布式参数
|
||||
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
||||
os.environ['MASTER_PORT'] = cfg.get("master_port", "29500")
|
||||
@ -78,7 +76,6 @@ def fit(rank, world_size, cfg):
|
||||
batch_size = int(cfg["batch_size"])
|
||||
num_workers = int(cfg["num_workers"])
|
||||
lr = float(cfg["lr"])
|
||||
patience = int(cfg["patience"])
|
||||
epochs = int(cfg["epochs"])
|
||||
warmup_epochs = int(cfg["warmup_epochs"])
|
||||
objective_params_list = cfg["train_objective_params_list"]
|
||||
@ -143,7 +140,6 @@ def fit(rank, world_size, cfg):
|
||||
# Tensorboard 上显示模型结构
|
||||
if rank == 0:
|
||||
tb_writer = SummaryWriter(log_dir=f"runs/{model_type}_{output_type}")
|
||||
# tensorboard graph: use a small dummy input placed on correct device
|
||||
dummy_input1, dummy_input2 = torch.randn(5, 3, 384, 384).to(device), torch.randn(5, 3).to(device)
|
||||
tb_writer.add_graph(model.module, (dummy_input1, dummy_input2))
|
||||
|
||||
@ -152,7 +148,6 @@ def fit(rank, world_size, cfg):
|
||||
|
||||
# 训练
|
||||
best_val_loss = float('inf')
|
||||
patience_counter = 0
|
||||
|
||||
if rank == 0:
|
||||
print_with_timestamp("Start training (DDP)")
|
||||
@ -163,8 +158,8 @@ def fit(rank, world_size, cfg):
|
||||
val_sampler.set_epoch(epoch)
|
||||
|
||||
start_time = time.time()
|
||||
avg_train_loss = train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn) / len(train_loader)
|
||||
avg_val_loss = valid_epoch(model, val_loader, epoch, epochs, device, loss_fn) / len(val_loader)
|
||||
avg_train_loss = train_epoch(model, train_loader, epoch, epochs, device, optimizer, loss_fn, rank) / len(train_loader)
|
||||
avg_val_loss = valid_epoch(model, val_loader, epoch, epochs, device, loss_fn, rank) / len(val_loader)
|
||||
current_lr = optimizer.param_groups[0]['lr']
|
||||
scheduler.step()
|
||||
epoch_time = time.time() - start_time
|
||||
@ -184,7 +179,6 @@ def fit(rank, world_size, cfg):
|
||||
|
||||
if avg_val_loss < best_val_loss:
|
||||
best_val_loss = avg_val_loss
|
||||
patience_counter = 0
|
||||
save_dict = {
|
||||
"epoch": epoch,
|
||||
# 保存 module.state_dict()(DDP 包裹时用 module)
|
||||
@ -197,11 +191,6 @@ def fit(rank, world_size, cfg):
|
||||
Path("ckpts").mkdir(exist_ok=True, parents=True)
|
||||
torch.save(save_dict, f"ckpts/{model_type}_{output_type}_best_model.pt")
|
||||
print_with_timestamp(f"New best model saved at epoch {epoch+1}")
|
||||
else:
|
||||
patience_counter += 1
|
||||
if patience_counter > patience:
|
||||
print_with_timestamp(f"Early stopping at {epoch+1} epochs")
|
||||
break
|
||||
|
||||
# 清除进程
|
||||
if tb_writer is not None:
|
||||
|
||||
@ -6,7 +6,6 @@ dataset_dir = "F:/Datasets/MODatasetD"
|
||||
batch_size = 64
|
||||
num_workers = 8
|
||||
lr = 1e-4
|
||||
patience = 5
|
||||
epochs = 5
|
||||
warmup_epochs = 1
|
||||
# 其它
|
||||
Loading…
x
Reference in New Issue
Block a user